Behavior of Ultra-High-Performance Concrete with Hybrid Synthetic Fiber Waste Exposed to Elevated Temperatures
نویسندگان
چکیده
The reinforcement of ultra-high-performance concrete (UHPC) with fibers was investigated in this study. Concrete is the most widely used manmade construction material, and UHPC has remarkable mechanical properties. properties can be modified by a variety curing procedures amount cement used. This study aimed to examine impact fiber reinforcement, temperature, exposure time on UHPC. Initially, temperature for changed from 300 °C 500 set 1 2 h. Various combinations ultrasonic pulse, thermal conductivity, compressive strength, flexural splitting, modulus elasticity, drop hammer (impact resistance, energy, ductility index) were after 91 days steam curing. For curing, kept at 90 three days. characteristics primary focus research. test results showed that accelerated regime achieved maximum strength 102.6 MPa specimens without 124.7 fibers, which represents 22% increase strength. When compared all qualities improved, especially when subjected high temperatures. incorporation hybrid synthetic waste key aspect developing new ultra-high-strength features.
منابع مشابه
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-streng...
متن کاملMechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers
Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending si...
متن کاملEvaluation of Hybrid Fiber Reinforced Concrete Exposed to Severe Environmental Conditions
Hybrid fiber reinforced concrete (HFRC) consisting of two or more different types of fibers has been widely investigated because of its superior mechanical properties. In the present study, the effect of the addition of steel (0.25%, 0.5%, 0.75%, and 1% of concrete volume) and Polypropylene (0.2%, 0.4%, and 0.6% of concrete volume) fibers on the surface scaling resistance of concrete, depth of ...
متن کاملExperimental investigation of the strength of glass fiber-reinforced concrete exposed to high temperature
This study investigated the effects of high temperature exposure on the compressive, tensile, and flexural strengths of concrete containing glass fiber. A total of 108 cubic specimens (150 mm × 150 mm × 150 mm), cylindrical specimens (300 mm × 150 mm), and prismatic specimens (500 mm × 150 mm × 150 mm) were prepared for compressive, tensile, and flexural strength testing, respectively. The spec...
متن کاملFeasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Buildings
سال: 2023
ISSN: ['2075-5309']
DOI: https://doi.org/10.3390/buildings13010129